

Aerospace Engineering

College of Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § \bigtriangledown	1
EGR 102 Fundamentals of Engineering Computing	CSC 117, 170, OR 2202
CIS/WRD 110 Composition and Communication I	
MA 113 Calculus I	MAT 141, 165 OR 1704
PHY 231 General University Physics	PHY 2104
PHY 241 General University Physics Laboratory	PHY 2101

Second Semester

EGR 103 Engineering Exploration II § ▽	2
MA 114 Calculus II	
CIS/WRD 111 Composition and Communication II	
CHE 105 General College Chemistry I	
UK Core – Social Sciences	

Sophomore Year

First Semester	Hours
MA 213 Calculus IIIMA	Г 230 or 2354
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301
EM 221 Statics	3
AER/ME 251 Introduction to Materials and Manufacturing Processes .	3
AER 245 Introduction to Aerospace Engineering	3

Second Semester

AER/ME 220 Engineering Thermodynamics I	
EM 302 Mechanics of Deformable Solids	
MA 214 Calculus IV	MAT 3603
EM 313 Dynamics	3
UK Core – Humanities	3

STA 210 Making Sense of Uncertainty:

An Introduction to Statistical Reasoning

or STA 2 or

STA 296 Statistical Methods and Motivations MAT 130

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 111/WRD 111, EGR 101, EGR 102, EGR 103 (or EGR 215 in lieu of EGR 101 and EGR 103), EM 221, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232, and PHY 242 and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

 ∇ Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

\$Online courses do not transfer. Chemistry labs must be in person.

- CONTINUED -

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at *www.sacscoc.org* for questions about the accreditation of University of Kentucky.

Junior Year

First Semester	Hours
EE 305 Electrical Circuits and Electronics	
AER 355 Engineering Analysis	3
AER 305 Aerospace Structures	3
AER/ME 330 Fluid Mechanics	3
WRD 204 Technical Writing	3
Second Semester	
AER/ME 310 Engineering Experimentation I	
AER 320 Propulsion	3
AER/ME 325 Elements of Heat Transfer	3
AER 345 Flight Dynamics	3
AER 335 Aerodynamics	3

Senior Year

First Semester	Hours
AER 411 AER Capstone Design I	3
AER 410 Aerospace Engineering Laboratory	3
AER/ME 440 Design of Control Systems	3
AER 445 Aircraft Performance	3
Technical Elective*	3
Second Semester	
AER 412 AER Capstone Design II	3
Technical Elective*	3
Technical Elective*	3
UK Core - Citizenship	3
UK Core – Global Dynamics	3

Aerospace Engineering • 2

*Technical electives can be chosen from the following list. At least three credit hours must come from either AER/ME 501 OR AER/ME 590. AER 380 Topics in Aerospace Engineering (Variable Topics) AER/ME 530 Gas Dynamics AER/ME 531 Fluid Dynamics I AER/ME 532 Advanced Strength of Materials AER 545 Aircraft Control and Simulation AER/ME 548 Aerodynamics of Turbomachinery AER/ME 563 Basic Combustion Phenomena AER/ME 565 Scale Modeling in Engineering AER/ME 590 Applied CFD and Numerical Heat Transfer AER/ME 516 Systems Engineering AER 599 Topics in Aerospace Engineering (Subtitle required) AER 395 Independent Work in Aerospace Engineering AER/ME 501 Mechanical Design with Finite Element Methods AER/ME 506 Mechanics of Composite Materials

AER/ME 510 Vibro-Acoustic Design in Mechanical Systems

AER/ME 513 Mechanical Vibrations

AER/ME 514 Computational Techniques in Mechanical System Analysis

Biomedical Engineering

College of Engineering

Freshman Year

First Semester	Hours
MA 113 Calculus I*	MAT 141, 165 OR 1704
PHY 231 General University Physics*	
PHY 241 General University Physics Laboratory*	PHY 2101
CIS/WRD 110 Composition and Communication I*A	
EGR 101 Engineering Exploration I §▽*	1
EGR 102 Fundamentals of Engineering Computing *	CSC 117, 170, OR 2202

Second Semester

MA 114 Calculus II*	MAT 171 or 1854
CHE 105 General College Chemistry I*	CHE 1314
CIS/WRD 111 Composition and Communication II*A	3
EGR 103 Engineering Exploration II §*▽	2
BIO 148 Introductory Biology I*	BIO 1103

Sophomore Year

First Semester	Hours
MA 213 Calculus III	MAT 230 or 2354
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301
BIO 152 Principles of Biology II	
BME 201 Introduction to Biomedical Engineering	3
Guided Engineering Elective I[1]	3
Second Semester	
MA 214 Calculus IV	MAT 3603
CHE 107 General College Chemistry II	CHE 132 or 1353

CHE 107 General Conege Chemistry IICHE 152 OF 1	333
PRD/BME 170 Human Anatomy for Design	3
PRD 272 Introduction to UX for Product Design	2
Guided Engineering Elective II [1]	3
UK Core – Humanities	3

First Semester		Hours
BME 322 Design Strategies for E	Biomedical Engineering	3
BME 435 Computer Modeling of	Complex Systems	3
PRD/EGR 250 Computer-Aided	Design: Solidworks	2
PRD 371 Ergonomics	-	1
	[1]	
UK Core - Social Sciences		3
Second Semester		
STA 381 Engineering Statistics -	A Conceptual Approach	3
BME 330 Experimental Methods	in Biomedical Engineering	3
PRD/BME 350 Materials and Pro	ocesses	3
PRD 372 UX + UI for Product D	esign	1
BME Basic Elective I [2]	-	3
UK Core – Citizenship - USA		
First Semester	Senior Year	Hours

Junior Year

Hours **First Semester** PRD/BME 451 Integrated Entrepreneurship in Product Design2 PGY 207 Case Studies in Physiology.....1

Second Semester

BME 421 Senior Design Project in Biomedical Engineering II ∞	.3
BME Basic Elective IIII [2]	.3
BME Basic Elective IV[2]	.3
BME Advanced Elective II [3]	.3
UK Core – Global Dynamics	3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of the following courses with at least a 2.5 GPA: BIO 148, BIO 152, BME 201, CHE 105, CIS 110 / WRD 110, CIS 111 / WRD 111, EGR 101, EGR 102, EGR 103, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232 and PHY 242. If the course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

△ Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102should also complete COM 181, COM 252, COM 281, or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

V Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

[1] Guided Engineering Elective options: CME 200, CME 320, EE 211, EE 305, EM 221, EM 302, EM 313, ME 340

[2] Basic BME Elective options: BME 440, BME 455, BME 464, BME 465, BME 470, BME 472, BME 473, BME 476, BME 477, BME 488, BME 491

[3] Advanced BME Elective options: BME 532, BME 540, BME 571, BME 573, BME 395

\$ Online courses do not transfer. Chemistry labs must be in person.

Biosystems Engineering

College of Engineering

Freshman Year

First Semester Hours
EGR 101 Engineering Exploration I § †1
EGR 102 Fundamentals of Engineering ComputingCSC 117, 170, OR 2202
CHE 105 General College Chemistry I*
CIS/WRD 110 Composition and Communication I*
MA 113 Calculus I *4
Second Semester
EGR 103 Engineering Exploration II § †
MA 114 Calculus II *MAT 171 or 1854
CIS/WRD 111 Composition and Communication II
PHY 231 General University Physics*

Sophomore Year

First Semester	Hours
BAE 200 Principles of Biosystems Engineering*	3
BIO 148 Introductory Biology I	BIO 1103
MA 213 Calculus III*	MAT 230 or 2354
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301
CE 106 Computer Graphics and Communication	3

Second Semester

BAE 202 Statistical Inferences for Biosystems Engineering	
MA 214 Calculus IV	
ME 220 Engineering Thermodynamics I	3
EM 221 Statics	
CHE 107 General College Chemistry II	CHE 132 or 1353

Junior Year

First Semester	Hours
BAE 301 Economic Analysis for Biosystems	2
ME 330 Fluid Mechanics	3
EE 305 Electrical Circuits and Electronics	3
EM 313 Dynamics	3
BIO 152 Principles of Biology II	3
WRD 204 Technical Writing ∞	
Second Semester	
BAE 305 DC Circuits and Microelectronics	3
EM 302 Mechanics of Deformable Solids	3
BAE 310 Heat and Mass Transfer in Biosystems Engineering	3
Biosystems Core Elective**	3
UK Core	3
UK Core	

Senior Year

First Semester	Hours
BAE 402 Biosystems Engineering Design I	2
BAE 400 Senior Seminar	1
Biosystems Core** or Technical Elective***	3
Biosystems Core** or Technical Elective***	3
Biosystems Core** or Technical Elective***	3
Biological Science Elective	3

Second Semester

.2
.3
.3
.3
.3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 110/WRD 110, MA 113, MA 114, MA 213, and PHY 231. Completion of BAE 200 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

**A minimum of 9 hours are required from the biosystems engineering core courses: BAE 417 Design of Machine Systems, BAE 427 Structures and Environment Engineering, BAE 437 Land and Water Resources Engineering, and BAE 447 Bioprocess Engineering Fundamentals.

***A minimum of 9 hours are to be taken in addition to the 9 core hours selected by the student. The technical electives allow the student an opportunity to concentrate or gain depth in one or more of the various specialty areas of biosystems engineering. The technical electives must be selected from the courses listed below and approved by the student's academic advisor. Other courses may be considered, each on its individual merit.

Approved technical electives: ABT 360, 495; ASC 325, 364; BAE 435G, 438G, 450, 503, 505, 506, 514, 515, 516, 532, 535, 536, 537, 538, 541, 542, 543, 545, 547, 549, 580, 581, 583, 599; BCH 401G; BIO 302, 303 (BIO 300 or 305), 304 (BIO 210 or BMB 330), 315 (BMB 210 or 340), 350, 395 (BNS 450); BME 301, 395, 472, 481G, 485, 488, 501, 530, 540, 579, 580, 599; CE 211, 303, 351, 451, 461G, 471G, 525, 551; CHE 230 (CHE 241), 236; CME 599; EE 402G; EES 530, 585; EGR 540, 542, 546, 599; FSC 434G, 530, 536, 538; GEO 309, 451G; ME 321, 344, 440, 501, 503, 513, 532; NRE 556; PGY 412G.

∞ Graduation Composition and Communication Requirement (GCCR) course.

§ Online courses do not transfer. Chemistry labs must be in person.

Chemical Engineering

College of Engineering

Freshman Year

First Semester	Hours
CIS/WRD 110 Composition and Communication I*	
MA 113 Calculus I*	MAT 141, 165 OR 1704
EGR 101 Engineering Exploration I § †	1
EGR 102 Fundamentals of Engineering Computing	CSC 117, 170, OR 2202
CHE 105 General College Chemistry I*	CHE 1314
CHE 111 General Chemistry I Laboratory*\$	CHE 1311

Second Semester

CIS/WRD 111 Composition and Communication II	3
MA 114 Calculus II*	MAT171 or 1854
EGR 103 Engineering Exploration II § †	2
PHY 231 General University Physics*	PHY 2104
UK Core – Social Sciences	

Sophomore Year

First Semester	Hours
CME 200 Process Principles	3
MA 213 Calculus III*	MAT 230 or 2354
CHE 107 General College Chemistry II*	CHE 132 or 1353
CHE 113 General Chemistry II Laboratory*\$	CHE 132 or 1352
MSE 201 Materials Science	3
UK Core – Humanities	

Second Semester

CME 220 Computational Tools in Chemical Engineering	3
CME 320 Engineering Thermodynamics	
MA 214 Calculus IV	MAT 3603
PHY 232 General University Physics	PHY 2304
STA 381 Engineering Statistics – A Conceptual Approach	

Junior Year	
First Semester	Hours
CME 330 Fluid Mechanics	3
CME 415 Separation Processes	3
CHE 230 Organic Chemistry I	CHE2413
CHE 231 Organic Chemistry Laboratory I \$	CHE 2411
CHE 446G Physical Chemistry for Engineers	3
WRD 204 Technical Writing ∞	
-	

Second Semester

CME 006 The Engineering Profession (Junior and Senior)	0
CME 420 Process Modeling in Chemical Engineering	3
CME 425 Heat and Mass Transfer	4
CME 432 Chemical Engineering Laboratory I	2
CHE 232 Organic Chemistry IICHE 242 or 341	3
Engineering/Science Elective [1]	3

Senior Year

First Semester Hours
CME 006 The Engineering Profession (Junior and Senior)0
CME 433 Chemical Engineering Laboratory II
CME 455 Chemical Engineering Process Design I
CME 470 Professionalism, Ethics and Safety
CME 550 Chemical Reactor Design
UK Core – Citizenship - USA
Engineering/Science Elective [1]
Second Semester
CME 006 The Engineering Profession (Junior and Senior)0
CME 456 Chemical Engineering Process Design II
CME 462 Process Control
UK Core – Global Dynamics
Engineering/Science Elective [1]
Engineering/Science Elective [1]

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CHE 107, CHE 111, CHE 113, CIS 110/WRD 110, MA 113, MA 114, MA 213, and PHY 231. Completion of CME 200 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

[1] Engineering/Science Elective Structure. Students must select four courses as follows:

1. Chemical Engineering elective [CME 395***, 404G, 505, 515, 523, 542, 552, 554, 556, 570, 573, 580, 599)

2. Science/math elective (totaling three or more credit hours) that is not a more elementary version of a required course. [Students may combine multiple qualifying courses that total 3credits (e.g. pre-medical students may wish to combine PHY 241 (PHY 210), 242 and CHE 233 (CHE 242 or 341)]

- a. Math [MA 321 (MAT 370), 322 (MAT 240), 416G, 432G, 433G (MAT 340), 471G, 481G]
- b. Chemistry [CHE 226 (CHE 250), 250, 510 and above]
- c. Biology [BIO 148 (BIO 110) and above]
- d. Physics [PHY 241 (PHY 210) and above]
- e. Other courses by approval of Director of Undergraduate Studies

3. Engineering elective (level 300 and above) that does not significantly duplicate content in a core chemical engineering course (e.g. ME 330) OR a CME Elective (CME 395 & above).

4. Chemical engineering elective (CME 395 and above) OR one engineering elective (level 300 and above) OR one science/math elective as described above.

***CME 395 (3 credits) may be used to satisfy only one elective requirement

§ Online courses do not transfer. Chemistry labs must be in person.

Civil Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § †	1
EGR 102 Fundamentals of Engineering ComputingCSC 1	17, 170, OR 2202
CIS/WRD 110 Composition and Communication I*	3
MA 113 Calculus I*MAT	141, 165 OR 1704
CHE 105 General College Chemistry I *	CHE 1314
Second Semester	
EGR 103 Engineering Exploration II § †	2

LOK 105 Engineering Exploration II §	······4
CIS/WRD 111 Composition and Communication II	3
MA 114 Calculus II [*]	MAT 171 or 1854
PHY 231 General University Physics*	PHY 2104
PHY 241 General University Physics Laboratory*	PHY 2101
UK Core – Social Sciences	

Sophomore Year

First Semester CE 211 Surveying*	Hours
CHE 107 General College Chemistry II* EM 221 Statics*	CHE 132 or 1353
MA 213 Calculus III* CE 106 Computer Graphics and Communication*	MAT 230 or 2354
Second Semester	
EM 302 Mechanics of Deformable Solids	3
MNG 303 Deformable Solids Laboratory	1
MA 214 Calculus IV	MAT 3603
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301

College of Engineering

Junior Year

First Semester	Hours
WRD 204 Technical Writing ∞	3
EES 220 Principles of Physical Geology	4
CE 312 Fundamentals and Applications of Sustainable Engineering	3
CE 341 Introduction to Fluid Mechanics	4
CE 381 Civil Engineering Materials I	3
Second Semester	
CE 303 Introduction to Construction Engineering	3
CE 331 Transportation Engineering	3
CE 351 Introduction to Environmental Engineering	3
CE 482 Structural Analysis and Design	3
Engineering Science Elective [2]	3

Senior Year

First Semester	Hours
CE 461G Water Resources Engineering	4
CE 471G Soil Mechanics	4
CE Design Elective [3]	3
Math/Science/Technical Elective [5]	3
UK Core – Citizenship - US	
Second Semester	
CE 401 Seminar	1
CE 429 Civil Engineering Systems Design	3
CE Design Elective [3]	3
Technical Elective [4]	3
UK Core – Humanities	3
UK Core – Global Dynamics	

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CE 106, CE 211, CHE 105, CHE 107, CIS 110/WRD 110, EGR 103, EM 221, MA 113, MA 114, MA 213, PHY 231, and PHY 241 and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

[1] STA 296 (MAT 130) or STA 381.

[2] ME 220 or EM 313.

[3] Students are required to select two design electives from different areas. Choose from: CE 508, CE 531 or CE 533, CE 534, CE 549, CE 551 or CE 599, CE 579, CE 589. Design elective courses are typically taught once a year.

[4] Technical Electives are to be chosen from any of the courses at the 300-level or above that carry a CE prefix and in which a student is qualified to enroll, exclusive of required courses. Engineering elective courses are typically taught once a year.

[5] Math/Science/Technical Elective Options: MA 321 (MAT 370), MA 322 (MAT 240), CHE 230 (CHE 241), CHE 236, EE 305, EES 550, EES 585, MNG 551, or the other half of the Engineering Science Elective in (2), or Technical Elective as defined in (4).

\$ Online courses do not transfer. Chemistry labs must be in person.

Computer Engineering

College of Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § †	1
EGR 102 Fundamentals of Engineering Computing	CSC 117, 170, OR 2202
MA 113 Calculus I	MAT 141, 165 OR 1704
CHE 105 General College Chemistry I*	CHE 1314
CIS/WRD 110 Composition and Communication I*	3

Second Semester

EGR 103 Engineering Exploration II § †	2
MA 114 Calculus II	MAT171 or 1854
PHY 231 General University Physics*	PHY 2104
PHY 241 General University Physics Laboratory	PHY 2101
CIS/WRD 111 Composition and Communication II	
CS 215 Introduction to Program Design,	
Abstraction, and Problem Solving Techniques*	CSC 2234

Sophomore Year

First Semester	Hours
MA 213 Calculus III	MAT 230 or 2354
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301
CS 216 Introduction to Software Engineering Techniques*	CSC3003
CPE 200 Computer Engineering Sophomore Seminar	1
CPE 282 Digital Logic Design*	4

Second Semester	
MA 214 Calculus IV	MAT 3603
EE 211 Circuits I	4
CPE 287 Introduction to Embedded Systems	4
CS 270 Systems Programming	3
CS 275 Discrete Mathematics	4

Junior Year First Semester Hours EE 223 AC Circuits. 4 CS 315 Algorithm Design and Analysis CSC 332.3 CPE 380 Computer Organization 3 STA 381 Engineering Statistics – A Conceptual Approach 3 UK Core – Humanities. 3

Second Semester

EE 421G Signals and Systems	3
EE 461G Introduction to Electronics	
Technical Elective ^{††}	3
CPE 480 Advanced Computer Architecture	
UK Core – Social Sciences	3

Senior Year

First Semester	Hours
CPE 490 ECE Capstone Design I ∞	3
CPE Elective † †	3
CPE Elective † †	3
Technical Elective [†]	3
UK Core – Citizenship - USA	3

Second Semester

CPE 491 ECE Capstone Design II †	.3
Hardware Elective €	.3
Software Elective ~	.3
CPE Elective †††	.3
UK Core – Global Dynamics	

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 110/WRD 110, CS 215, CS 216, EE 282/CPE 282, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

* Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

^{††} Technical elective may be selected from upper-division engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding more elementary version of required courses. To be selected in consultation with academic advisor. If a student wishes to use CS 499 instead of CPE 490 and CPE 491 to fulfill the GCCR and senior design requirements, the student must receive approval from the DUS to select an additional technical elective that supports the proposed CS 499 project.

+++ 400-level CS courses and 500-level CPE and EE courses with emphasis in the computer engineering area. To be selected in consultation with academic advisor.

€ Hardware electives are senior level courses in the CPE or EE disciplines and shall be selected from the following list and/or selected in consultation with academic advisor:

EE 582 Hardware Description Languages and Programmable Logic CPE 584 Introduction of VLSI Design and Testing CPE 585 Fault Tolerant Computing CPE 586 Communication and Switching Networks

~ Software electives are senior level courses in the CPE or CS disciplines and shall be selected from the following list and/or selected in consultation with academic advisor: CS 441G Compilers for Algorithmic Languages (fall only)

CS 471G Networking and Distributed Operating Systems

CS 570 Modern Operating Systems

CPE 588 Real-Time Computer Systems

\$ Online courses do not transfer. Chemistry labs must be in person.

11......

Computer Science

Freshman Year

College of Engineering

First Semester Hours		
EGR 101 Engineering Exploration I § †1		
EGR 102 Fundamentals of Engineering ComputingCSC 117, 170, OR 2202		
CHE 105 General College Chemistry I (CHE 131)		
or		
PHY 231 General University Physics ^o		
CIS/WRD 110 Composition and Communication I		
MA 113 Calculus I		
Second Semester		
EGR 103 Engineering Exploration II †2		
CIS/WRD 111 Composition and Communication II		
MA 114 Calculus II *MAT171 or 1854		
PHY 231 General University Physics (PHY 210)		
or		
CHE 105 General College Chemistry I ^o CHE 1314		
PHY 241 General University Physics Laboratory ‡PHY 2101		
CS 215 Introduction to Program Design,		
Abstraction, and Problem Solving Techniques*CSC 2234		
Sophomore Year		

First Semester

First Semester	Hours
CS 216 Introduction to Software Engineering Techniques*	CSC3003
CS 275 Discrete Mathematics*	4
EE 280 Design of Logic Circuits	
MA 213 Calculus III	MAT 230 or 2354
UK Core - Social Sciences	3
Second Semester	
CS 270 Systems Programming	

Junior Year

First Semester	Hours
CS/MA 321 Introduction to Numerical Methods (MAT 370)	
or	
MA 322 Matrix Algebra and Its Applications	MAT2403
CS 371 Introduction to Computer Networking	3
Computer Science Elective [C]	3
Computer Science Elective [C]	
STA 381 Engineering Statistics – A Conceptual Approach	3
Second Semester	
CS 375 Logic and Theory of Computing	CSC 3343
Computer Science Elective [C]	
Computer Science Elective [C]	3
Technical Elective [T]	3
UK Core – Citizenship - US	3
Natural Science Elective [N]	3

Senior Year

First Semester	Hours
CS 498 Software Engineering for Senior Project	
Computer Science Elective [C]	
Technical Elective [T]	
UK Core - Global Dynamics	
Free Elective [E]	4
Second Semester	
CS 499 Senior Design Project ∞	
Computer Science Elective [C]	
Technical Elective [T]	
Free Elective [E]	
Free Elective [E]	

CS 270 Systems Programming	3
CS 315 Algorithm Design and Analysis	CSC 3323
Technical Elective [T]	3
UK Core – Humanities	
Science Elective [S]	

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CS 215, CS 216, CS 275, and MA 114. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

^o Based on advisor consult.

* Only if enrolled in PHY 231 (PHY210).

[T] Any additional 300-level or higher classes selected from computer science, electrical engineering, mathematics [including MA 214 (MAT 360): Calculus IV and excluding MA 308: Problem Solving-Middle School and MA 310: Mathematics Problem Solving-Teachers], College of Business and Economics, or by the Department of Computer Science's approval.

[S] Science Elective (3 credit hours)- must be selected from UK core natural science list, UK core social science list, or approved by the Department of Computer Science. Natural science course cannot be an elementary version of a required course.

[C] Computer Science Elective (18 credit hours) - include 300-level and above computer science courses with three classes to be selected from: CS 316, CS 335, CS 378, CS 405G, CS 441G, CS 450G, CS 460G and CS 463G.

[N] Natural Science (3 credit hours) – Any natural science course to be selected from the UK core natural science list or approved by the Department of Computer Science. Natural science course cannot be an elementary version of a required course.

[E] Free Elective (10 credit hours) – can be any course that earns college credit and is not a more elementary version of a required course. 6 credits are not to be selected from computer science, mathematics, natural science and engineering.

∞ Graduation Composition and Communication Requirement (GCCR) course.

\$ Online courses do not transfer. Chemistry labs must be in person.

Electrical Engineering

. .

College of Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § †	1
EGR 102 Fundamentals of Engineering Computing	CSC 117, 170, OR 2202
PHY 231 General University Physics	PHY 2104
PHY 241 General University Physics Laboratory	PHY 2101
CIS/WRD 110 Composition and Communication I	3
MA 113 Calculus I	MAT 141, 165 OR 1704

Second Semester

. .

EGR 103 Engineering Exploration II § †	2
CIS/WRD 111 Composition and Communication II	
MA 114 Calculus II	MAT171 or 1854
CHE 105 General College Chemistry I	CHE 1314
CS 215 Introduction to Program Design,	
Abstraction, and Problem Solving	CSC 2234

Sophomore Year

First Semester	Hours
MA 213 Calculus III	MAT 230 or 2354
PHY 232 General University Physics	PHY 2304
PHY 242 General University Physics Laboratory	PHY 2301
EE 211 Circuits I	4
EE/CPE 282 Digital Logic Design	4

Second Semester

MA 214 Calculus IV	MAT 3603
EE 223 AC Circuits	4
EE/CPE 287 Introduction to Embedded Systems	4
UK Core – Social Sciences	
UK Core – Humanities	3

Junior Year

First Semester	Hours
EE 415G Electromechanics	3
EE 421G Signals and Systems	3
Elective EE Laboratory [L]	2
EE 461G Introduction to Electronics	3
MA 320 Introductory Probability (MAT 310) or	
STA 381 Engineering Statistics – A Conceptual Approach	3
Technical Elective [T]	3
Second Semester	
EE 468G Introduction to Engineering Electromagnetics	4
Elective EE Laboratory [L]	2
Engineering/Science Elective [E]	3
Technical Elective [T]	
UK Core – Citizenship - USA	

Senior Year

First Semester	Hours
EE/CPE 490 ECE Capstone Design I∞	
EE Technical Elective**	
EE Technical Elective**	
Math/Statistics Elective [M]	3
UK Core – Global Dynamics	
Second Semester	
EE/CPE 491 ECE Capstone Design II	
EE Technical Elective**	
EE Technical Elective**	
Engineering/Science Elective [E]	
UK Core – Statistical Inferential Reasoning	3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CIS 110/WRD 110, CHE 105, CS 215, EE 211, EE 282/CPE 282, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

[M] Math/Statistics Elective: Any upper-division (300-level or higher) math or statistics course excluding MA 308 and MA 310 (3 credit hours total).

[E] Engineering/Science Electives: Any engineering, physics, computer science, or math course at the 200-level or higher, other than an electrical engineering course and excluding MA 308, MA 310, and more elementary versions of required courses (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

[T] **Technical elective** may be selected from upper-division (300-level or higher) engineering, mathematics, statistics, computer science, physics, or other technicallyrelated fields excluding MA 308, MA 310, EE 305, and more elementary versions of required courses, to be selected in consultation with the academic advisor (6 credit hours total).

[L] Electrical Engineering Laboratory Elective: EE 416G, EE 422G, EE 462G (4 credit hours total).

 ∞ Graduation Composition and Communication Requirement (GCCR) course.

§ Online courses do not transfer. Chemistry labs must be in person.

- CONTINUED -

Electrical Engineering • 2

**EE Technical Electives (must be 500-level courses). Courses recommended as electrical engineering technical electives are listed below (each course is 3 credit hours): EE 503 Power Electronics EE 511 Introduction to Communication Systems EE 512 Digital Communication Systems EE 513 Audio Signals and Systems EE 517 Advanced Electromechanics EE 518 Electric Drives EE 522 Antenna Design EE 523 Microwave Circuit Design EE 525 Numerical Methods and Electromagnetics EE 527 Electromagnetic Compatibility EE 531 Alternative and Renewable Energy Systems EE 532 Smart Grid: Automation and Control of Power Systems EE 533 Advanced Power System Protection EE 535 Power Systems: Generation, Operation and Control EE 536 Power System Fault Analysis and Protection EE 537 Electric Power Systems I EE 538 Electric Power Systems II EE 539 Power Distribution Systems EE 543 Solar Cell Devices and Systems for Electrical Energy Generation EE 546 Electric Power System Fundamentals EE 560 Semiconductor Device Design EE 566 Engineering Optics EE 567 Introduction to Lasers and Masers EE 568 Fiber Optics EE 569 Electronic Packaging Systems and Manufacturing Processes EE 571 Feedback Control Design EE 572 Digital Control of Dynamic Systems EE 582 Hardware Description Languages and Programmable Logic EE 584 Introduction of VLSI Testing and Design EE 585 Fault Tolerant Computing EE 586 Communication and Switching Networks EE 587 Microcomputer Systems Design EE 588 Real-Time Computer Systems

EE 589 Advanced VLSI

EE 599 Topics in Electrical Engineering (Subtitle required)

Materials Engineering

College of Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § †	1
EGR 102 Fundamentals of Engineering Computing	.CSC 117, 170, OR 2202
CHE 105 General College Chemistry I*	CHE 1314
CHE 111 General Chemistry I Laboratory*\$	CHE 1311
CIS/WRD 110 Composition and Communication I*	
MA 113 Calculus I*	MAT 141, 165 OR 1704
Second Semester	
EGR 103 Engineering Exploration II § †	
CIS/WRD 111 Composition and Communication II	
MA 114 Calculus II *	MAT171 or 1854
PHY 231 General University Physics*	PHY 2104
PHY 241 General University Physics Laboratory*	PHY 2101
UK Core – Social Sciences	

Sophomore Year

First Semester	Hours
MSE 201 Materials Science	3
MSE 202 Materials Science Laboratory	1
MA 213 Calculus III*	MAT 230 or 2354
CHE 107 General College Chemistry II*	CHE 132 or 1353
CHE 113 General Chemistry II Laboratory*\$	CHE 132 or 1352
EM 221 Statics	3

Second Semester

MSE 301 Materials Science II	
MSE 351 Materials Thermodynamics	3
MA 214 Calculus IV	MAT 3603
PHY 232 General University Physics	PHY 2304
CHE 236 Survey of Organic Chemistry \$	

First Semester Hours MSE 401G Metal and Alloys 3 MSE 404G Polymeric Materials 3 CME 200 Process Principles 3 EM 302 Mechanics of Deformable Solids 3 STA 381 Engineering Statistics – A Conceptual Approach 3 UK Core – Humanities 3 Second Semester 3 MSE 402G Electronic Materials and Processing 3 MSE 402G Commiss Formation and Processing 3

Junior Year

Senior Year

First Semester	Hours
MSE 408 Materials Laboratory II	3
MSE 436 Material Failure Analysis	3
MSE 470 Application of Materials Engineering to Design Problems	1
MSE 585 Materials Characterization Techniques	3
EE 305 Electrical Circuits and Electronics	3
Technical Elective [1]	3
Second Semester	
MSE 480 Materials Design	3
MSE 538 Metals Processing	3
Technical Elective [1]	
UK Core - Citizenship - USA	3
UK Core – Global Dynamics	3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CHE 107, CHE 111, CHE 113, CIS 110/WRD 110, MA 113, MA 114, MA 213, PHY 231, and PHY 241. Completion of MSE 201 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

[1] Technical Electives - total of 6 credit hours and must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with a MSE prefix. MSE 395 (research) may count for one elective, but not both. Recommended technical electives include but are not limited to: MSE 395, 506, 531, 552, 554, 556, 569, 599; BME 488; CHE 580; CME 542, 599; MA 322, 422, 432G; ME/MFS 503

∞ Graduation Composition and Communication Requirement (GCCR) course.

\$ Online courses do not transfer. Chemistry labs must be in person.

Mechanical Engineering

College of Engineering

Freshman Year

First Semester	Hours
EGR 101 Engineering Exploration I § † *	1
EGR 102 Fundamentals of Engineering Computing*	CSC 117, 170, OR 2202
CIS/WRD 110 Composition and Communication I*	
MA 113 Calculus I*	MAT 141, 165 OR 1704
PHY 231 General University Physics*	PHY 2104
PHY 241 General University Physics Laboratory *	PHY 2101
Second Semester	
EGR 103 Engineering Exploration II § † *	2
MA 114 Calculus II *	MAT171or1854
CIS/WRD 111 Composition and Communication II	

Cib/ Wite TTT Composition and Communication in anti-	
CHE 105 General College Chemistry I*	CHE 1314
UK Core ¶ – Social Sciences	

Sophomore Year

First Semester MA 213 Calculus III*MAT PHY 232 General University Physics* PHY 242 General University Physics Laboratory* EM 221 Statics* ME 205 Computer Aided Engineering Graphics	PHY 2304 PHY 2301 3
Guided Elective or UK Core ¶ – Humanities	
Second Semester ME 220 Engineering Thermodynamics I ME 251 Introduction to Materials and Manufacturing Processes MA 214 Calculus IV EM 313 Dynamics	
Guided Elective or UK Core* – Humanities Guided Elective or UK Core* – Statistical Inferential Reasoning.	
Recommended: STA 210 Making Sense of Uncertainty: An Introduction to Statistical Reasoning or	

Junior Year

First Semester	Hours
EM 302 Mechanics of Deformable Solids	3
EE 305 Electrical Circuits and Electronics	3
ME 330 Fluid Mechanics	3
ME 340 Introduction to Mechanical Systems	3
WRD 204 Technical Writing**	3
Second Semester	
ME 310 Engineering Experimentation I	3
ME 321 Engineering Thermodynamics II	3
ME 325 Elements of Heat Transfer	3
ME 344 Mechanical Design	3

Senior Year

Mathematics Elective***

First Semester H ME 411 ME Capstone Design I	Hours
ME 311 Engineering Experimentation II ME 440 Design of Control Systems	3
ME 501 Mechanical Design with Finite Element Methods or	
ME 590 Computational Fluid Dynamics	3
Technical Elective††	3
Second Semester	
ME 412 ME Capstone Design II	3
Technical Elective ††	
Technical Elective † †	3
UK Core* – Citizenship - US	3
UK Core* – Global Dynamics	3

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 111/WRD 111, EGR 101, EGR 102, EGR 103 (or EGR 215 in lieu of EGR 101 and EGR 103), EM 221, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232, and PHY 242 and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

¶ To be selected from UK Core courses in consultation with the academic advisor.

**Graduation Composition and Communication Requirement (GCCR) course.

***Mathematics Elective - choose one course from approved list.

††Technical Electives - choose 9 hours from approved list.

\$ Online courses do not transfer. Chemistry labs must be in person.

Mechanical Engineering • 2

Mathematics Elective	Hours
Choose one course from the following:	
MA 320 Introductory Probability	MAT3103
MA 321 Introduction to Numerical Methods	MAT3703
MA 322 Matrix Algebra and Its Applications	MAT2403
MA 416G Introduction to Optimization	3
MA 432G Methods of Applied Mathematics I	3
MA 433G Introduction to Complex Variables	MAT 3403
MA 481G Differential Equations	3
STA 381 Engineering Statistics – A Conceptual Approach	3
Subtotal: Mathematics Elective	

oubtotal. Mathematics Elective....

Technical Electives

Hours

Technical Electives 110	uis
Choose 9 hours from the following:*	
ME 380 Topics in Mechanical Engineering (Variable Topics)	
ME 395 Independent Work in Mechanical Engineering	1-3
ME 416 Automotive Painting Technology	3
ME 417 Sheet Metal Forming	3
ME 418 Automotive Assembly and Quality Control	3
ME 501 Mechanical Design with Finite Element Methods	3
ME/MFS 503 Lean Manufacturing Principles and Practices	3
ME/MFS 505 Modeling of Manufacturing Processes and Machines	3
ME/MSE 506 Mechanics of Composite Materials	
ME/MFS 507 Design for Manufacturing	3
ME 510 Vibro-Acoustic Design in Mechanical Systems	3
ME/MFS 511 Machining of Materials and Applications	3
ME/MFS 512 Manufacturing Systems	3
ME 513 Mechanical Vibrations	
ME 514 Computational Techniques in Mechanical System Analysis	3
ME 515 Rotordynamics of Turbomachinery	
ME 516 Systems Engineering	
ME/EE/MFS 526 Lean Operations Management I	
ME 527 Applied Mathematics in the Natural Sciences I	
ME 530 Gas Dynamics	
ME 531 Fluid Dynamics I	
ME 532 Advanced Strength of Materials	
ME 542 Kinematic Synthesis of Mechanisms	
ME 548 Aerodynamics of Turbomachinery	
ME 549 Power Generation	
ME/MFS/CME/MSE 554 Chemical and Physical	
Processing of Polymer Systems	3
ME/EE/MSE 555 Introduction to Micro-/Nano-	
Electromechanical Systems	3
ME/MFS/CME/MSE 556 Introduction to Composite Materials	
ME 560 Engineering Optics	
ME 563 Basic Combustion Phenomena	
ME 565 Scale Modeling in Engineering	
ME/EE/MSE 570 Fundamentals of Nanoelectric Devices and Materials	
ME/BAE 580 Heating, Ventilating and Air-Conditioning	
ME/BAE/EGR/MFS/EE 583 Industrial Energy Utilization and Assessment	
ME/BALLEON/ME/SEE 585 Industrial Energy Outization and Assessment	
ME 580 Applied CFD and Numerical Heat Transfer	
ME 590 Applied CFD and Runnerear freat fransfer	
MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)	
wir's 577 ropies in Manufacturing Systems Engineering (Subtitle required)	3

Non-ME Technical Electives BME 573 Cell Mechanics and Mechanobiology......3 EGR 523 Concepts, Assessment Tools and Methods MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)......3

*A minimum of 6 credit hours (two courses) must have an ME prefix or be cross-listed as an ME course. A maximum of 3 credit hours (one course) may be chosen from technical electives with prefixes other than ME. Exceptions only with the approval of the Director of Undergraduate Studies.

First Somostor

Mining Engineering

College of Engineering

Freshman Year

First Semester	Hours
CHE 105 General College Chemistry I*	CHE 1314
CIS/WRD 110 Composition and Communication I*	
EGR 101 Engineering Exploration I § †	
EGR 102 Fundamentals of Engineering Computing	CSC 117, 170, OR 2202
MA 113 Calculus I*	MAT 141, 165 OR 1704
Second Semester	
CIS/WRD 111 Composition and Communication II	3
EGR 103 Engineering Exploration II § †	2
MA 114 Calculus II*	
PHY 231 General University Physics*	PHY 2104
PHY 241 General University Physics Laboratory (PHY 210))
or	CITE 101
CHE 111 General Chemistry I Laboratory ¶\$	CHE1311
UK Core – Social Sciences	
Sophomore Year	
First Somostor	Hours

Junior Year

First Semester	Hours
EM 313 Dynamics	3
MNG 211 Mine Surveying	2
MNG 301 Minerals Processing	
MNG 335 Introduction to Mine Systems Analysis ⁺	
MNG 463 Surface Mine Design	3
UK Core – Humanities	3
Second Semester	
CE 341 Introduction to Fluid Mechanics	4
MNG 311 Electrical Circuits and Mining Machinery	3
MNG 371 Professional Development of Mining Engineers ∞	
MNG 435 Mine Systems Engineering and Economics	

Senior Year

MNG 551 Rock Mechanics4

First Semester	Hours
MNG 332 Mine Plant Machinery	3
MNG 341 Mine Ventilation	3
MNG 351 Underground Mine Design	3
MNG 591 Mine Design Project I	1
UK Core - Citizenship - USA	
Second Semester	
BAE 535/MNG 535 Environmental Control System	
Design and Reclamation	3
MNG 592 Mine Design Project II	
(UK Core – Arts and Creativity)	3
Minerals Processing Technical Elective[1]	
Technical Elective**	3
UK Core - Global Dynamics	

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CIS 110/WRD 110, CHE 105, MA 113, MA 114, MA 213, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Hours

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

A Students taking ENG 101 (ENG 170, HUM, 110, or HUM 111) and ENG 102 should also complete COM 181, COM 252, COM 281, or COM 287.

* Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

 \P Students only required to take one lab. Consult with advisor.

[1] The Minerals Processing Technical Elective is to be chosen between MNG 575, Coal Preparation Design, and MNG 580, Mineral Processing Plant Design.

∞ Graduation Composition and Communication Requirement (GCCR) course.

^{††}MNG 335 satisfies the Statistical Inferential Reasoning requirement in the UK Core.

**Courses recommended as technical electives are listed below. These courses must be chosen with the approval of the student's advisor to ensure that the curriculum includes sufficient engineering design content.

Technical Electives: Students are required to select their technical elective from the departmental courses listed below:

MNG 511 Mine Power System Design

MNG/MFS 520 Industrial Automation and Control

MNG 531 Advanced Blast Design and Technology

MNG 541 Computer Design of Mine Ventilation Systems

\$ Online courses do not transfer. Chemistry labs must be in person.

- CONTINUED -

O kokpi 'Gpi koggt koi 'É4

OPI '777'Cf xcpegf 'I gqo gej cpkeu'K OPI '783'O kpg'Eqputwevkqp'Gpi kpggtkpi 'K OPI '797'EqcriRtgr ctcvkqp'F guki p OPI '7: 2'O kpgtcriRtqeguukpi 'Rrcpv/F guki p OPI '7: 7'Crrnkgf 'Uxthceg'Ej go knt { OPI '7; ; ''Vqr ke'lp'O kplpi 'Gpi kpggtkpi